首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4279篇
  免费   734篇
  国内免费   456篇
化学   5108篇
晶体学   15篇
力学   26篇
综合类   25篇
数学   31篇
物理学   264篇
  2024年   6篇
  2023年   93篇
  2022年   96篇
  2021年   401篇
  2020年   400篇
  2019年   252篇
  2018年   218篇
  2017年   249篇
  2016年   355篇
  2015年   296篇
  2014年   318篇
  2013年   406篇
  2012年   310篇
  2011年   260篇
  2010年   229篇
  2009年   247篇
  2008年   213篇
  2007年   190篇
  2006年   172篇
  2005年   133篇
  2004年   137篇
  2003年   112篇
  2002年   60篇
  2001年   48篇
  2000年   35篇
  1999年   44篇
  1998年   36篇
  1997年   31篇
  1996年   18篇
  1995年   22篇
  1994年   15篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1971年   1篇
排序方式: 共有5469条查询结果,搜索用时 31 毫秒
21.
22.
Biodegradable and thermosensitive polyaspartamide derivatives containing pendant azide groups P(Asp‐Az)X‐HPAs were synthesized from poly(l ‐succinimide) via the ring‐opening reaction with 2‐azidoethylamine (Az) and 5‐hydroxypentylamine (HPA). Then hydrophobic phenethyl (PEA) and imidazole (IMZ) moieties were introduced successfully with very high reaction efficiency above 90% to the side chains of P(Asp‐Az)X‐HPA by click reaction to obtain thermoresponsive polyaspartamide derivatives containing pendant aromatic rings P(Asp‐Az)X‐HPA‐PEAs and the thermo/pH‐responsive polyaspartamide derivatives containing pendant imidazole rings P(Asp‐Az)X‐HPA‐IMZs, respectively. The thermoresponsive behaviors of P(Asp‐Az)X‐HPA‐PEAs and P(Asp‐Az)X‐HPA‐IMZs were confirmed by dynamic light scattering (DLS) and transmittance measurements, and the cloud point can be tuned by designed amounts of azide groups and can be further adjusted by the grafting molar percentage of hydrophobic phenethyl or imidazole moieties to the side chains of P(Asp‐Az)X‐HPA via click chemistry. The pH‐responsive behavior of P(Asp‐Az)X‐HPA‐IMZs can also be tuned. These results indicate that the obtained polyaspartamide‐based functional polymers can be further functionalized with hydrophilic long PEG chain and/or targeted moieties via click chemistry for drug delivery. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1296–1303  相似文献   
23.
Both molecular and crystal‐engineering approaches were exploited to synthesize a new class of multidrug‐containing supramolecular gelators. A well‐known nonsteroidal anti‐inflammatory drug, namely, indomethacin, was conjugated with six different l ‐amino acids to generate the corresponding peptides having free carboxylic acid functionality, which reacted further with an antiviral drug, namely, amantadine, a primary amine, in 1:1 ratio to yield six primary ammonium monocarboxylate salts. Half of the synthesized salts showed gelation ability that included hydrogelation, organogelation and ambidextrous gelation. The gels were characterized by table‐top and dynamic rheology and different microscopic techniques. Further insights into the gelation mechanism were obtained by temperature‐dependent 1H NMR spectroscopy, FTIR spectroscopy, photoluminescence and dynamic light scattering. Single‐crystal X‐ray diffraction studies on two gelator salts revealed the presence of 2D hydrogen‐bonded networks. One such ambidextrous gelator (capable of gelling both pure water and methyl salicylate, which are important solvents for biological applications) was promising in both mechanical (rheoreversible and injectable) and biological (self‐delivery) applications for future multidrug‐containing injectable delivery vehicles.  相似文献   
24.
Octahedral titanium(IV) complexes of phenolato hexadentate ligands were developed and showed very high stability for days in water solutions. In vitro cytotoxicity studies showed that, whereas tetrakis(phenolato) systems are generally of low activity presumably due to inaccessibility, smaller bis(phenolato)bis(alkoxo) complexes feature high anticancer activity and accessibility even without formulations, also toward a cisplatin‐resistant cell line. An all‐aliphatic control complex was unstable and inactive. A leading phenolato complex also revealed: 1) high durability in fully aqueous solutions; accordingly, negligible loss of activity after preincubation for three days in medium or in serum; 2) maximal cellular accumulation and induction of apoptosis following 24–48 h of administration; 3) reduced impact on noncancerous fibroblast cells; 4) in vivo efficacy toward lymphoma cells in murine model; 5) high activity in NCI‐60 panel, with average GI50 of 4.6±2 μm . This newly developed family of TiIV complexes is thus of great potential for anticancer therapy.  相似文献   
25.
The use of quantitative nuclear magnetic resonance spectrometry for the determination of non‐UV active memantine hydrochloride with relative simplicity and precision has been demonstrated in this study. The method was developed on a 500 MHz NMR instrument and was applied to determination of the drug in a tablet formulation. The analysis was performed by taking caffeine as an internal standard and D2O as the NMR solvent. The signal of methyl protons of memantine hydrochloride appeared at 0.75 ppm (singlet) relative to the signal of caffeine (internal standard) at 3.13 ppm (singlet). The method was found to be linear (r2 = 0.9989) in the drug concentration range of 0.025 to 0.80 mg/ml. The maximum relative standard deviation for accuracy and precision was <2. The limits of detection and quantification were 0.04 and 0.11 mg/ml, respectively. The robustness of the method was revealed by changing nine different parameters. The deviation for each parameter was also within the acceptable limits. The study highlighted possibility of direct determination of memantine hydrochloride in pure form and in its marketed tablet formulation by the use of quantitative NMR, without the need of derivatization, as is the requirement in HPLC studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
26.
27.
Poly(lactic acid) (PLA) is a versatile, bioabsorbable, and biodegradable polymer with excellent biocompatibility and ability to incorporate a great variety of active agents. Silver sulfadiazine (SDZ) is an antibiotic used to control bacterial infection in external wounds. Aiming to combine the properties of PLA and SDZ, hydrotalcite ([Mg–Al]‐LDH) was used as a host matrix to obtain an antimicrobial system efficient in delivering SDZ from electrospun PLA scaffolds intended for wound skin healing. The structural reconstruction method was successfully applied to intercalate silver sulfadiazine in the [Mg–Al]‐LDH, as evidenced by X‐ray diffraction and thermogravimetric analyses. Observations by scanning electron microscopy revealed a good distribution of SDZ‐[Mg–Al]‐LDH within the PLA scaffold. Kinetics studies revealed a slow release of SDZ from the PLA scaffold due to the intercalation in the [Mg–Al]‐LDH. In vitro antimicrobial tests indicated a significant inhibitory effect of SDZ‐[Mg–Al]‐LDH against Escherichia coli and Staphylococcus aureus. This antibacterial activity was sustained in the 2.5‐wt% SDZ‐[Mg–Al]‐LDH–loaded PLA nanofibers, which also displayed excellent biocompatibility towards human cells. The multifunctionality of the PLA/SDZ‐[Mg–Al]‐LDH scaffold reported here is of great significance for various transdermal applications.  相似文献   
28.
The drug delivery system based on nano/micromotors has become a research hot spot in recent years. However, naked micromotors may be ruptured or passivated under the complex biological environment, which will result in the leakage of drugs in advance or limited self-propulsion performance. Herein, an injectable micromotor@hydrogel drug delivery system to protect micromotors from the external environment is proposed. The micromotors were prepared through layer-by-layer assembly technology. The asymmetric decomposition of hydrogen peroxide catalyzed by the locally distributed platinum nanoparticles enabled efficient propulsion of the micromotors in low concentration of hydrogen peroxide. In order to protect micromotors, they were loaded into the Schiff base hydrogel. The micromotor@hydrogel system can be injected directly into the lesion to release micromotors in response to the environment, reducing external influence on micromotors and improving the sustained-release effect. Erythromycin (Ery) loaded into the micromotors and the micromotor@hydrogel system demonstrated excellent antibacterial effect. Micromotors released from the hydrogel underwent enhanced diffusion in the surroundings of bacteria without addition of exogenous hydrogen peroxide, which was manifested by their appearance in edge of the inhibition zone. The proposed micromotor@hydrogel drug delivery system offers a new strategy for the treatment of bacterial infections.  相似文献   
29.
《Mendeleev Communications》2022,32(5):591-593
Water-dispersible complexes of 4-methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide possessing anticancer activity were prepared by its immobilization with biocompatible polymer nanocontainers based on sodium alginate cross-linked with Ca2+ and Mg2+ ions. It was found that this isoxazole derivative retains its structure during immobilization. Colloidal stable nanocontainers filled with this compound exhibit toxicity toward the colon carcinoma (HCT116) tumor cell line.  相似文献   
30.
Extension of the medicinal chemistry toolbox is in the vital interest of drug designers. However, the diffusion of an innovation can be a lengthy process. Along these lines, it took almost 70 years before the use of the sulfoximine group reached a critical mass in medicinal chemistry. Even though interest in this versatile functional group has increased exponentially in recent years, there is ample room for further innovative applications. This Review highlights emerging trends and opportunities for drug designers for the utilization of the sulfoximine group in medicinal chemistry, such as in the construction of complex molecules, proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and novel warheads for covalent inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号